
digital

INDUSTRIAL BASIC
...Solving the Industrial Control Problem

INDUSTRIAL BASIC is

Easy to Learn
Industry-Standard Language
English Command Expressions
Complete Documentation
One Week Training

Easy to Implement
Support of Process I/O

Extensive Program Development
Facilities on the Same System

Simple System Generation
Quick Start-Up with ROM Bootstrap
Power Fail Optionally Included

Easy to Expand
Supports Extended Digital and Analog I/O

Supports up to 32K Core Memory
Extended Arithmetic Capability
Disk Storage Capability

INDUSTRIAL BASIC...Solving the
Industrial Control Problem

DIGITAL’S continuing commitment to solving the prob
lems of industry has evolved into its newest adaptation
of the worldwide BASIC language...INDUSTRIAL
BASIC. In the past, total minicomputer control of
processes has been difficult (and expensive) due to the
restrictions of assembly language programming and
software development. INDUSTRIAL BASIC now solves
the control problem.

Why INDUSTRIAL BASIC?

A major problem in applying a minicomputer to control
of a production process is the high cost involved in
system integration and software development...far
exceeding any increases in productivity. Without control-
oriented software, the number of options open to a
control engineer in implementing a dedicated control
system is limited: The first option is for the engineer to
build and implement a computer-based control system
without other assistance. The necessary hardware is
available, and at a reasonable cost. However, many
engineering hours must be spent customizing inter
faces, integrating, and checking out the system. The
engineer must also know assembly language or if not,
hire a programmer. Here, the cost of the software is
normally equal to or often higher than that of the hard
ware itself, and the cost of the system doubles. More
over, the lack of flexibility automatically reduces the
effectiveness of the control system.

The second option is to obtain a complete hardware and
software "turnkey" control system from a computer man
ufacturer or custom system house. This package usually
includes software, interfaces, and application programs.
But the cost is usually three times that of the first option.
This approach not only restricts the user from learning
all phases of his process control system, but may force
disclosure of proprietary information. Even further, the
user is totally dependent on the computer manufacturer
or “turnkey” system supplier, limiting future system
development possibilities.

The Solution: INDUSTRIAL BASIC’s
Control-Oriented Software

There is a solution to industrial control; it’s called
INDUSTRIAL BASIC; and, it’s supplied in DIGITAL’S
Industrial-800 Systems. Process or control engineers can
now do their own programming and interact with proc
esses in this new adaptation of the widely familiar
BASIC language. INDUSTRIAL BASIC is geared specif
ically toward ease of implementation and programming.
It is designed with the control engineer in mind, and for
real-time control applications ranging from process
control to quality control to testing to material handling
to monitoring.

https://classic.technology

https://classic.technology

Expanded Input/Output Capabilities
for Sequential Operation

BASIC to INDUSTRIAL BASIC

High-level languages are easy to learn and in fact,
many process and control engineers are already
familiar with BASIC. Hence, the use of BASIC in the
development of INDUSTRIAL BASIC. Inherently,
BASIC provides mathematical and decision-making
capability; but, it does not provide operations
necessary in industrial control applications such as
service of external interrupts, analog and digital input
and output, and time-based scheduling. DIGITAL’S new
BASIC is INDUSTRIAL precisely because it offers fea
tures such as digital input, digital output, digital output
readback, analog input, and analog output. In addition,
it provides the statements and functions necessary to
service external interrupts.

A word about BASIC: Originally developed by Dartmouth
University, standard BASIC is an interactive, high-level
programming language aimed at enhancing communi
cation between user and computer. Vehicles for this
communication are common English expressions (com
mands) which permit direct user influence of any
aspect of the program or process. This means that pro
grams can be created, modified, and debugged simply...
reducing overall program development time. And be
cause of the simplicity of BASIC, you need not be a
programming expert to understand and use the lan
guage. The process or control engineer can easily and
effectively work with BASIC, eliminating the need for
an outside systems house for program development.

Some elementary BASIC commands are:

LET—assigns a variable a value, whether it is a constant
or the result of arithmetic expressions.

PRINT—prints out the indicated information.

READ—transmits values from the data list to the
variables.

DATA—provides data for a program.

GOTO—changes the order of program execution.

IF THEN—conditionally changes the order of program
execution.

GOSUB—directs the program to a subroutine within
the program.

RETURN—the command to return from a
subroutine.

STOP—terminates program execution.

Others are FOR TO STEP, NEXT, INPUT,
REM, RESTORE, DEF, END, DIM, UDEF.

https://classic.technology

By its original Dartmouth definition, BASIC is considered
a sequential system: Each command produces a result
when it is executed; in fact, the only commands that may
given are those which have immediate results.
For instance:

READY 1

90 INPUT A

100 LET B = SQR(A)

110 PRINT A, “SQRT(A) = ” ,B

120 GOTO 90

130 END

RUNNH

?1
1. Computer output.

The BASIC user types in the computational procedure
as a series of numbered statements, as shown.

BASIC also includes certain functions which are a part
of the language. These functions eliminate the need for
writing many small subroutines to perform elementary
calculations. Included are Sine, Cosine, Arctangent,
Exponent, Natural Logarithm, Random Number, Ab
solute Value, Integer, Sign, Square Root, Trace Func
tions, and any User-defined Functions. They enable
development and testing of the application program
quickly and easily. Facilities for corrections and editing
are also incorporated into BASIC, as well as looping,
string-handling, listing, and tables.

The DIGITAL Programming Languages handbook is
available for additional information on BASIC. Or any
other BASIC text is applicable; information can be
readily obtained because standard BASIC is taught in
elementary through college-level educational
institutions.

INDUSTRIAL BASIC Real-time
Operation

Standard BASIC operates only in a step-by-step fashion
where one operation logically leads to the next.
INDUSTRIAL BASIC makes total real-time control pos
sible with the addition of new capabilities for analog and
digital inputs and outputs and external event-driven
routines. With external event routines, an external
signal to the program causes a specific routine to be per
formed, or a routine may be performed every so many
seconds. INDUSTRIAL BASIC accepts inputs from a
process and can generate the necessary controlling
outputs within a time acceptable for successful process
operation...complete real-time control.

I/O
MODULES

INDUSTRIAL - 8
SYSTEM

INDUSTRIAL BASIC STATEMENTS

FIELD
POWER

FIELD
DEVICES

FIELD
POWER

SCREW
TERM.

CABLE
ASSEMBLY

TWISTED
PAIR

INPUT LINES

THERMOCOUPLE

COUNTER
INPUT

ASSEMBLY

OUTPUT
DRIVER

ASSEMBLY

COUNTER
OUTPUT

ASSEMBLY

CONTACT
INPUT

ASSEMBLY

D/A
CONVERTER
ASSEMBLY

A/D
CONVERTER
ASSEMBLYINPUT VOLTAGE

CONTACTS

PULSE INPUT

LAMP OR DISPLAY

ANALOG RECORDER OR CONTROLLER

STEPPING MOTOR CONTROL

LET Y=ANI (5,100)

CONTACT 5 THEN 1000

LET

let

> LET

A = CNI (3)

A=SDO(5,4,3)

A=ANO (3, OUT)

Y =CNO(2,10)

lndustrial-8 System with interfaces and INDUSTRIAL BASIC statements

https://classic.technology

Digital Input:

RDI reads digital input devices such as mechanical
or solid-state switches and thumbwheels (single- or
multi-point input capability). Digital input can be a
single "point” or a group of contacts in a BCD thumb
wheel, or a measuring device readout. Input points are
organized in ascending order from "point” 1 to the maxi
mum limit allowed in the system. A single toggle switch
connected to the system as point 20 may be sampled
by the statement:

LET Y=RDI (20,1)

Y is set to "0” or "1” depending upon the status of the
toggle switch ("0” for open or off, "1” for closed or on).
The RDI function performs the sampling. To avoid
sampling each individual bit or point of a thumbwheel
or readout device, a more expanded version of the
same statement is:

LET Y=RDI (20,4)

Y will be set to the value of the 4 points starting at point
20. If a BCD readout device with 4 digits of output were
connected to digital input points 1 through 16 (4 points
per digit times 4 digits), the statement would be:

Y=RDI (1,4)* 1000 + RDI (5,4) * 100+RDI (9,4) *
10+RDI (13,4)

Y would contain the value from the readout device.

Any given command produces direct results with
sequential operation. For example, a voltage reading
may be critical to some portion of your production
process. You may need information regarding that
voltage at any time. So you issue a command, get the
data, and make an appropriate decision.

Even further, you might require either analog or digital
inputs and outputs in a real-time situation. Analog inputs
and outputs are those that vary between two arbitrarily
selected limits of say, voltage, current, or resistance.
Control devices that generate analog values are pres
sure transducers, thermocouples, or tachometer
generators. Digital values, on the other hand, are those
that switch between two levels of voltage, current, or
resistance. One of the levels is usually OFF and the
other ON. Limit switches or pushbuttons are examples
of devices that emit digital values. The new expansions
of INDUSTRIAL BASIC allow you to generate this input/
output information easily.

https://classic.technology

Digital Output

SDO sends digital output. This function allows relays,
solenoids, and stepping motors to be driven under pro
gram control. Simply, if a relay were connected to point
26, that relay could be energized by the simple statement:

LET Y=SDO(26,1,1)

In this operation, SDO is the send-digital-output function,
and 26 the selected point. The number of points specified
is 1 and the second 1 is the value to be sent. The relay
could be de-energized by:

LET Y=SDO (26,1,0)

Here, 0 opens the relay. As with digital input, multiple
points may be output to ease the display of BCD data.
Consider the display via BCD display on points 1
through 12 of BCD thumbwheels on input points
1 through 12:

100 Y=SDO (1,4,RDI(1,4))

110 Y=SDO (5,4,RDI(5,4))

120 Y=SDO (9,4, R DI (9,4))

If the user desires, the above statements could be
combined into one.

Digital Output Readback

RDO reads digital output. This function provides a
convenient form of digital output readback for common
algorithms that deal with output devices, rather than the
sampling of input switches. The function actually returns
information reflecting the commands that were given to
the output devices. This is useful in systems where the
output devices are set and reset by a number of routines:

LET Y= RDO (20,2)

Here, Y is set to a value reflecting the latest output com
mands given to points 20 and 21.

Analog Output

ANO generates a voltage or current output on the
Digital to Analog Converter. This function provides the
capability to drive instrumentation such as proportional
valves, setpoint controllers, and measuring devices.
For instance:

LET Y=ANO (15,OUT)

where analog output point 15 is selected and the analog
value of OUT is converted to a voltage or current by the
computer output module. The output may be in one of
four ranges:

Voltages: 0 to +10
1 to +5

Currents: 4 to 20MA
10 to 50MA

In order to generate a value for a setpoint controller, and
if OUT is the percentage of full scale, the statement
would be:

LET Y=ANO (15,1.023 * OUT)

In this example, 1.023 is a scaling constant.

Analog Input

ANI samples data on the Analog to Digital Converter.
Industrial processing requires both analog and digital
inputs to be complete. Since analog "points” or channels
can reflect a range of values, this treatment evolves:

LET Y=ANI (10,200)

Y is set to the value of channel 10 and read at a gain of
200. The value of Y will be the voltage sampled at
channel 10 multiplied by 200. Polynomials can be con
structed to convert the analog inputs to engineering
units (degrees Fahrenheit, psi, etc.) so that the data may
be processed and acted upon.

Counter Output

CNO loads a counter module with the number of items
to count before generating an interrupt.

LET A=CNO (2,300)

The channel of the counter module is 2, and the number
of items to count before generating the interrupt is 300.

Counter Input

CNI returns the number of counts remaining in a
counter module.

LET A=CNI(3)

In this example, A is assigned the number of events
remaining to be counted in counter 3.

Clock Function

CLK performs two functions: first, if the variable X in an
operation is positive, the system clock is set to this value.
(X must be less than 86,400—the number of seconds in
24 hrs.); second, if X is zero or negative, the value (in
seconds) of the system clock is returned.

To set the system clock to 12:00:00:

100 LET T=12*3600

200 LETX-CLK(T)

300 END

To read the system clock

100 LET T=CLK (0)

Simply, four classes of input and output are supplied by
INDUSTRIAL BASIC:

Analog (Input and Output)
Digital (Input and Output)
Counter (Load and Read)
Clock (Set and Read)

These functions permit operation of processes and
devices, automatically under program control... the
parameters being analog, digital, counting or timed
conditions. While these are required features in most
control/data acquisition systems, INDUSTRIAL BASIC
uses them as a starting point and expands into the
servicing of external interrupts.

https://classic.technology

External-Event-Driven Control

Many industrial computer applications must make pro
vision for operations, actions, or inputs not under direct
control of the program. For instance, alarms may go off
unexpectedly or other periodic activity may take place
that has scheduling conflicts. Control of external devices
and conditions is usually by sampling, which requires
that all inputs must always be polled, though a critical
situation may never arise.

Control of external situations requires a more powerful
language capability to instruct the operating system in
what specific action to take. The most significant addi
tions to the BASIC language and operating system that
create INDUSTRIAL BASIC are those that allow the
system to recognize and deal with external interrupts.

In the INDUSTRIAL BASIC system, the control engineer
is able to establish external event routines just as though
they are subroutines in BASIC. In place of the normal
GOSUB however, events are associated with or discon

TIMER External
Event Routine

COUNTER External
Event Routine
610
¡620

DISMISS

CONTACT External
Event Routine

520. .
530. . . .
ISMISS

INDUSTRIAL BASIC statements
10...

30 .
40 .
50 .
60 .
70 .
80 .
90 .
100

nected from an external event routine. The association
statements define which external event routines are to
be activated and when. These routines are priority
operations and will interrupt the mainline program when
called. The interrupting is controlled by the operating
system and is completely transparent. (The mainline
program is suspended and reactivated without assistance
or knowledge of the programmer.)

When an external event routine is set up and an ex
ternal event interrupt occurs, the operating system can
recognize, schedule, and resolve conflicts in operations.
Control is automatically transferred to the specified line
in the INDUSTRIAL BASIC program that begins the
external event routine. Upon the completion of this
routine, control is returned to the original point of de
parture from the main program. New INDUSTRIAL
BASIC statements for external-event driven control
follow.

420
¡430

TIMER...
.. .associatesa time interval with an external event routine.
When the specified interval has elapsed, the routine is
scheduled for execution, and the timer restarted. A
maximum of four software timers may be active simul
taneously. Time intervals that are zero or negative
deactivate all the timers associated with the specified
line number. This allows the user to change the elapsed
time intervals or stop the timers entirely.

Examples of TIMER statements:

200 TIMER 10 THEN 400

300 TIMER 0 THEN 400

100 TIMER 7 THEN 400
110 TIMER 3 THEN 400

Here, every 10 seconds the
external event routine be
ginning at line 400 will be
executed.

In this statement, all timers
associated with line 400 of
the external event routine
are deactivated.

These statements cause 2
timers to start; a 7-second
timer that will cause the
external event routine at
line 400 to be scheduled for
execution every 7 seconds,
and a 3-second timer that
will cause the external
event routine at line 400 to
be scheduled for execution
every 3 seconds. At 21 -
second intervals, the ex
ternal event routine is
scheduled twice.

The following is an example of a time-based operation:
10 TIMER 10 THEN 400
20 TIMER 15 THEN 500
25 LET Y=0
30 GOTO 25

400 PRINT “SEGMENT 400“
410 DISMISS
500 PRINT “SEGMENT 500“
510 DISMISS
600 END

This operation will print “SEGMENT 400“ every 10
seconds, and “SEGMENT 500“ every 15 seconds
until terminated.

CONTACT...

...associates a change in a switch position with the
scheduling of an external event routine. A maximum of
three modules (36 points) of UDC contact interrupts
is permitted. The variable in a CONTACT statement
is the line number associated with the specified
CONTACT.

200 CONTACT 1 THEN 600
300 CONTACT 2 THEN 600
400 CONTACT 3 THEN 700

After these statements are executed, a change of state
in CONTACT 1 or 2 will cause the external event routine
at line 600 to be scheduled. A change of state in CON
TACT 3 will schedule the external event routine begin
ning at line 700.

COUNTER...

...associates the completion of a counting operation with
a specified line number, the first line of an external event
routine. Four UDC counter modules are supported. As
with the TIMER statement, when the counter number is
zero or negative, all counters associated with the line
number are disabled. Counter modules should be loaded
via the CNO function for counting operations.

Example of a COUNTER statement:

200 COUNTER 1 THEN 1000

This statement schedules the external event routine
beginning at line 1000 when counter 1 counts to zero.
Following is an example of a program to load a counter
with a number of items to count and log the completion
of the count:

10 COUNTER 1 THEN 100
20 REM NOW LOAD COUNTER
25 LET A=CNO (1,100)
30 LET A=0
35 GOTO 30

100 PRINT “COUNT CYCLE COMPLETE”
110 DISMISS
900 END

DISMISS...

...terminates execution of an external event interrupt
routine. This statement causes the mainline BASIC
program to resume execution. If another user process
interrupt routine is scheduled, it will receive control at
this point. DISMISS performs an action similar to
RETURN.

https://classic.technology

https://classic.technology

External Event Routines—
Control Simplified

The whole point of servicing external interrupts via
INDUSTRIAL BASIC is to simplify resolution of the
control algorithm, provide all the possibilities necessary
to operate and resolve conflicts automatically... in short,
to make the job of industrial control much easier than it
has been in the past. Multiple interrupts, conflicting
timers, counters that complete their jobs simultaneously,
can all be resolved by the operating system and external
event routines. So that ultimately, you have more time to
devote to major system considerations. In fact, the
entire INDUSTRIAL BASIC solution to control makes
the task of designing, developing, and implementing the
control system in high-level language so easy—it’s
almost elementary.

File Statements and Chaining

INDUSTRIAL BASIC also provides a number of state
ments for operating on files: FILE #, PRINT #, INPUT #,
CLOSE #, and IF END #. These statements are distin
guishable from other INDUSTRIAL BASIC statements
by the number sign (#) at the end of each statement.

The FILE # statement opens a file; the file can be of
fixed or variable length and in numeric format (files
stored as successive three-word floating-point numbers
with the last word in each block unused), or ASCII format
(files stored in standard OS/8 format—three 8-bit charac
ters to every two words). The PRINT # statement writes
data into files. INPUT # reads data from files. CLOSE #
functions as the closure after a file has been searched
for data or as a closure for all output files before ending
the program in order to prevent the loss of data. IF END #
allows the user to determine whether or not there has
been an end-of-file detected for the file in question. In
general, file operations permit the logging of data for
later reduction, or the use of prepared files as control
information (recipes, tables, etc.).

In chain-handling, the CHAIN statement provides a
convenient means of dividing large programs into a
series of smaller programs which are written and stored
separately, and executed in a chain. When INDUSTRIAL
BASIC encounters a CHAI N statement, it stops execu
tion of that program, retrieves the program named in
the CHAI N statement from the specified device and file,
compiles the chained program, and begins execution of
the program. This operation is the equivalent of running
an OLD program with no header (RUNNH).

INDUSTRIAL BASIC Operating and
Editing

Certain commands enable the user of INDUSTRIAL
BASIC to edit and control execution of programs by
erasing characters or lines, listing all or any part of a
program, saving programs on various storage devices,
and calling programs from storage devices.

https://classic.technology

Corrections can be implemented very simply by using
the SHIFT/O, the RUBOUT, or the CTRL/U commands,
depending upon whether it is desirable to stop a long
listing, delete whole lines or single characters. The
RESEQ program allows the re-sequencing of line num
bers when, after extensive program modifications, the
user wishes a greater increment between line numbers.

An entire program, with program heading, can be listed
on the terminal by typing the LIST command. Also, any
portion of a program can be retrieved by using LIST
followed by a line number. This causes that line and all
following lines in the program to be listed. The LISTNH
command is used as the LIST command, but eliminates
the heading from the listed printout.

RUN and RUNNH (with or without program header)
cause the program to run after it has been typed or
loaded into core via the OLD command.

Hardware for INDUSTRIAL BASIC

The minimum hardware configuration supported by
INDUSTRIAL BASIC is a PDP-8with 8K of core, a
UDC I/O interface, and a real time clock, with either
dual DECtape or a cartridge disk as a systems device.
INDUSTRIAL BASIC is offered in the Industrial 801-B
and 811-B Systems , shown on the opposite page. Other
devices supported are a DECcassette system,
DECwriter, Teletype, Extended Arithmetic Element,
Power Fail, and additional core memory.

In addition to INDUSTRIAL BASIC, the Industrial-800
Systems include the OS/8 software package. Installa
tion assistance, training, and software support are also
provided. For more information, contact your local field
sales office; locations follow.

DIGITAL EQUIPMENT CORPORATION, Maynard, Massachusetts, Telephone:
(617) 897-5111 • ARIZONA, Phoenix • CALIFORNIA, Sunnyvale, Santa Ana,
Los Angeles, Oakland, San Diego and San Francisco (Mountain View) •
COLORADO, Engelwood • CONNECTICUT, Meriden • DISTRICT OF COLUMBIA,
Washington (Riverdale, Md.) • FLORIDA, Orlando • GEORGIA, Atlanta • .
ILLINOIS, Northbrook • INDIANA, Indianapolis • LOUISIANA, Metairie •
MARYLAND,Riverdale*MASSACHUSETTS,Cambridge and Waltham» MICHIGAN,
Ann Arbor and Detroit (Southfield) • MINNESOTA, Minneapolis • MISSOURI,
Kansas City and Maryland Heights • NEW JERSEY, Fairfield, Metuchen and
Princeton • NEW MEXICO, Albuquerque • NEW YORK, Huntington Station,
Manhattan, New York, Syracuse and Rochester • NORTH CAROLINA, Durham/
Chapel Hill • OHIO, Cleveland, Dayton and Euclid • OKLAHOMA, Tulsa •
OREGON, Portland • PENNSYLVANIA, Bluebell, Paoli and Pittsburgh • TENNESSEE,
Knoxville • TEXAS, Dallas and Houston • UTAH, Salt Lake City • WASHINGTON,
Bellevue • WISCONSIN, Milwaukee • ARGENTINA, Buenos Aires • AUSTRALIA,
Adelaide, Brisbane, Crows Nest, Melbourne, Norwood, Perth and Sydney •
AUSTRIA, Vienna • BELGIUM, Brussels • BRAZIL, Rio de Janeiro, Sao Paulo and
Porto Alegre • CANADA, Alberta, Vancouver, British Columbia; Hamilton,
Mississauga and Ottawa, Ontario; and Quebec • CHILE, Santiago • DENMARK,
Copenhagen and Hellerup • FINLAND, Helsinki • FRANCE, Grenoble and Rungis •
GERMANY, Cologne, Hannover, Frankfurt, Munich and Stuttgart • INDIA, Bombay

• ISRAEL, Tel Aviv • ITALY, Milano • JAPAN, Osaka and Tokyo • MEXICO,
Mexico City • NETHERLANDS, The Hague • NEW ZEALAND, Auckland
• NORWAY, Oslo • PHILIPPINES, Manila • PUERTO RICO, Miramar and
Santurce • REPUBLIC OF CHINA, Taiwan • SCOTLAND, West Lothian •
SPAIN, Barcelona and Madrid • SWEDEN, Soina and Stockholm • SWITZERLAND,
Geneva and Zurich • UNITED KINGDOM, Birmingham, Bristol, Edinburgh,
London, Manchester, Reading and Warwickshire • VENEZUELA, Caracas

https://classic.technology

